
International Journal of  Theoretical Physics, Vol. 35, No. 8, 1996 
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Using the Tang-Toennies potential model and a set of expressions given by J. 
Kestin et aL, we calculate the transport properties of the two noble gases He and 
Ne and of their binary mixtures, based upon the calculation of the interaction 
potential. Our calculated results for the transport properties are restricted to low 
densities but cover the full temperature interval extending from 50 K to the onset 
of ionization; the mole fraction of the binary mixtures is xl:x2 = 0.25:0,75. Our 
results are comparable to the best theoretical results given by J. Kestin et al. 

1. INTRODUCTION 

In their research on transport properties Chapman and Cowling (1939) 
derived the equations for the viscosity, diffusion, and thermal diffusion of 
multicomponent mixtures of gases. Kestin et al. (1984) reported a set of 
easy-to-program expressions for the calculation of the thermodynamic and 
transport properties of the noble gases and of their binary and multicomponent 
mixtures for the various integrals of 15 pair potentials as functions of tempera- 
ture and composition. Each pair potential is characterized by material con- 
stants which have been accurately determined by a complex numerical fit to 
a selected body of experimental data with considerable additional input from 
theory, mainly of quantum mechanical character. Thus, they calculated all 
properties over the whole range of temperature from absolute zero to the 
onset of ionization and over the complete composition range of any one of 
the binary and multicomponent mixtures. Until now there has been no other 
theoretical calculation based on the calculation of accurate interaction poten- 
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tials to check the correctness of the results given by Kestin et  al. Experimen- 
tally it is also difficult to test their results, especially near the ionization. 

In this paper, based upon the accurate calculation of the interaction 
potential between the noble gas atoms using the Tang-Toennies potential 
model (Tang and Toennies, 1984), we calculate the transport properties of 
the two noble gases He and Ne and of their binary mixtures over the whole 
range of temperature from 50 K to ionization with a set of expressions given 
by Kestin et  al. (1984). Our calculation also goes a long way beyond the 
ranges covered by direct measurements, but the secure theoretical formulation 
makes such an extrapolation both possible and reliable. In Section 2, we 
briefly describe the Tang-Toennies potential model and present our calculated 
potential parameters, in which the van der Waals coefficients C6, C8, and 
C~o are evaluated by employing Pad4 approximation, and the Born-Mayer 
parameters are determined by considering the Tang-Toennies model and the 
well depth and the location selected from the experimental results. In Section 
3, we describe the calculation method for the transport properties as functions 
of temperature. In Section 4, our calculated results are compared with the 
best results given by Kestin et al. (1984). Furthermore, from the point of 
view of atomic and molecular physics, we point out that the different transport 
properties of gases are related to the different parts of the interaction potential 
of the corresponding systems. 

2. CALCULATION OF THE INTERACTION POTENTIAL 
BETWEEN GASEOUS ATOMS 

2.1. The Tang-Toennies Potential Model 

In the Tang-Toennies model, the potential is expressed as a sum of the 
SCF short-range potential and the long-range attractive dispersion potential 
plus a correction term: 

V(R) -------- VScF(R ) + Vdisp(R ) + Vcorr(R) (1) 

where VscF(R) is obtained from an accurate SCF calculation and can often 
be fitted by a Born-Mayer form 

VscF(R) = Ascv exp(-bR)  (2) 

The dispersion potential is given by the damped dispersion series 

Vdisp(R) = E ¢ tR'~r R-2'+ j2,,~ J,~2,, (3) 
n_~3 

where f2,,(R) is the so-called damping function. The undamped dispersion 
series is divergent mainly because of the charge overlap. The proper damping 
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function should remove the singular point at R = 0 and turn the asymptotic 
series into a convergent series. According to Tang and Toennies (1984), these 
damping functions can be expressed as 

2,, (bR)k 
fz , (R)  = 1 - e -bR ~ k! (4) 

k=0 

where b is the same range parameter as in the repulsive potential of equation 
(2). Thus these are parameter-free universal damping functions. They satisfy 
the boundary conditions 

f2,,(R) ~ 1 as R --> z¢ 

f2,,(R) ---) 0 + O(R 2"+1) as R --~ 0 

It has been shown that for the H-H and H-He interaction they agree 
with the "exact" damping functions very well (Tang and Toennies, 1984; 
Tang and Yang, 1990), especially for the most important terms of 2n = 6, 
8, 10. Gutowski et al. (1987) carried out an elaborate ab initio calculation 
of the He-He interaction and showed that the "exact" damping functions for 
that system agree with equation (4) better than with any other proposed 
damping functions. These damping functions have been applied to several 
chemically different types of van der Waals interaction with vastly different 
dispersion coefficients; not only is satisfactory convergence of the dispersion 
series obtained for all of them, when added to the repulsive potential the 
different shapes of the potentials are also successfully predicted. The most 
important terms in equation (3) are C6, Cs, and C10. The higher terms can 
be estimated from the recursion relation (Tang and Toennies, 1984) 

C 3 
{'~2,,-2~C 

c2o =  c2n-4) 2,,-o 

In our calculation the series is terminated at n = 9 and results are not 
significantly different from the ones obtained with the series terminated at 
n = 10, since the series is convergent. 

The correction term Vco~ represents all other contributions to the poten- 
tial, such as exchange dispersion, intraatomic correlation, and higher order 
terms, that is, 

Vco. = V r -  VscF - -  V~i~p (6 )  

where VT is the true potential; it is a small term, but is very difficult to 
calculate. Fortunately this term is important only in the region of the potential 
well. This is the flexible part of the model where the interplay between theory 
and experiment can take place. With the major part of the potential determined 
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by physically meaningful quantities, we can approximate this small remaining 
term with the help of experiment. It is reasonable to choose the same functional 
form for this term as either Vscv or Vdi~p. In either case, V~orr can be absorbed 
into one of these terms. Therefore the complete potential model is written as 

2. c:, ,  
V(R) = a e  -OR - ,>-3 ~ 1 - e -bR k=o ~ ~.w. ] R z,, (7) 

If A, b, C6, 6"8, and C1o for any system are accurately known, it has been 
found that the potential in the region of the potential well can be described 
by equation (7) with 

A = (1 + ¢x)AscF (8) 

where a is a small number varying between 0,13 and 0.19. This means that 

Vco~r = aAscFe -°R (9) 

The Tang-Toennies potential model offers the following principal advan- 
tages over earlier work and over most of the other models used to predict 
or fit van der Waals potentials. This model expression is of a simple closed 
form and analytic. All five parameters (A, b, C6, C8, and Ci0) which are of 
principal importance have a simple physical meaning and in part are available 
from ab initio theory. Alternatively, we can use the dispersion coefficients 
and the experimentally measured well depth and the location of the well 
minimum R,, to determine the Born-Mayer parameters A and b (Tang and 
Toennies, 1978). The modified Tang-Toennies model can predict the poten- 
tials for ion-atom systems (Ahlrichs et al., 1988; Skullerud and Larsen, 1990). 

2.2. The van der Waais Coefficients 

In this paper the upper and lower bounds of the van der Waals coefficients 
for the noble gas atoms are obtained by employing the [2, 1], [1, 0] Pad6 
approximation (Langhoff and Karplus, 1976). The data for the sum rule, 
excitation energy, and static polarizability for the noble gases are selected 
from Standard and Certain (1985). Our calculated van der Waals coefficients 
C6, C8, and Ci0 are in good agreement with those of Tang et al., (1976). 

2.3. The Born-Mayer Parameters A and b 

To find A and b we assume that R,,,, e, and C2,, are all given (Tang and 
Toennies, 1984), and we set x = R/R,,, and U(x) = V(R)/e, where 

~ [ 2" (b*x)k J r , ,  U(x) = A * e x p ( - b * x ) -  ~ 1 - ~ ~ exp(-bx)  ~ (I0) 
n>-3 k=0 
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where 

A* = A/¢ 

b* = bR,, 

C~, = C2,,/eRZ,2 

We use the reduced form of the potential (10) at the minimum U(x) Ix= 
= - 1  and [dU(x)/dx] I x=l = 0. We get 

2~ (b,)~ 2n (b*) 2" 
A* = • e h* - ~_~ k---T]- " b--gCg,-  • (--~n)V. Cg,, (11) 

n->3 k=0 n->3 

2 1 - e - b * k ~ = o ~  ~ -  1 C~,, -,,~->3e-b*(b*)2"C~. (12) 
,,->3 . =  . - _ (2n)! - 

+ 1 = 0  

We use the above two equations to determine A* and b*; our results 
are in good agreement with those of Tang and Toennies (1984); see Table I. 

Our results for the interaction potential between the noble gas atoms 
are in good agreement with those of the experiments. This shows that the 
Tang-Toennies model can take account of the divergence of the dispersion 
expansion and the influence of charge overlap. 

3. CALCULATION OF TRANSPORT PROPERTIES 

Once the interaction potential is known, the transport coefficients of 
noble gases can be obtained from the Chapman-Enskog solution of the 
integrodifferential Boltzmann equation. According to this method, the trans- 
port properties of the noble gases can be expressed as algebraic functions of the 
collision integrals. In this section, we summarize the formulas and numerical 
procedures used to compute the properties of the noble gases and their 
binary mixtures at low density. Low density means that their properties are 
determined by binary collisions. 

The collision integrals are Boltzmann-like averages of transport cross 
section having the form (Hirschfelder et al., 1964) 

f0 ~"'s)(T) = exp(--X)×"+tQU~(Ktx) dx (13) 

where K is the Boltzmann constant, T is the absolute temperature, p. is the 
reduced mass of the colliding partners, and X is a dimensionless quantity 
given in terms of the initial kinetic energy of collision E, 

X = E/kT = p~vZ/2kT (14) 
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For present purposes, it is sufficient to calculate the collision cross sections 
classically. The classical definition for Q~l) is 

Qctl = 2~r (1 - cost0)b db (15) 

where b is the impact parameter and 0 is the classical angle of  deflection, 
which is given by 

° d R  

0 = ~r - 2b R{[I - V(R)/E]R 2 - b2} 1/2 (16) 
0 

where R0 is the distance of  closest approach, which is the largest root of  

[1 - V(Ro)IE]R~ = b 2 (17) 

The calculation of  the collision integrals involves three successive inte- 
grations, all of  which were carried out numerically. The collision integrals 
and collision cross sections are evaluated with the I5-point Gauss-Laguerre  
quadrature (Abramowitz and Stegun, 1970). Because there is a singularity 
at R = R0 in the integrant of  equation (16), the deflection angles were 
calculated by the Gauss-Mehler  quadrature (Hildebrand, 1956), which is 
especially suited for the evaluation of such integrals. Substituting x = RIRo 
in (16), we obtain 

2b I f  f ( x )  dx o = ~ - ~ ( i  -~)-- - , ,2  (18)  

where 

1 - x 2 ~": 
f ( x )  = 1 - V(Ro/x)/E - b2x2/R~] (19) 

The integral can then be approximated by the series 

IO hi2 t f ( x )  dx _ "rr ~ f (cos[(2j  - l)'rr/2n]) (20) 
(1 - xZ) 1/2 n j=j 

where n is an even integer; to take n = 30 is more than sufficient for 
convergence. 

3 .1 .  P u r e  S u b s t a n c e s  

Once the collision integrals have been calculated, the transport coeffi- 
cients in any order of approximation can be evaluated. In first-order approxi- 
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mation, the self-diffusion coefficient DI, viscosity "qb and thermal 
conductivity h.~ are given, respectively, by 

3 (2"rrK3T3) 'n 1 
D I  = g - -  ' pa(l,l----- 5 ( 2 1 )  

5 1 
"rll = ~ ( 2"rrla'KT)ln ~.(2.2) 

where p = 1.013 bar. 
In second-order approximation, the self-diffusion coefficient, viscosity, 

and thermal conductivity are given, respectively, by 

D2 --'= (1 + 8)D1 

= 

where 

, = 

[10 + 2  ~.]E~(2"2)] - '  [ E~(''2,L~ 5] 2 

f 
~(2.3) 2 

3 . 2 .  B i n a r y  M i x t u r e  

Binary diffusion coefficient: 

where 

012 

A 

c h  = 

b = 

C = 

3(2,rrK3T3)ln 1 + A 
- -  . p ~ l  ~z,2--------- ~ 

E~(6C~2 - 5)2ax l t (1  + bxO 

1.3 

2 m ~/~.:" 
8(1 + 1.8c)~.2) 
10a(l + 1.8c + 3c z) - 1 
m2 
- - < 1  
ml 

(23) 
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where 

Binary viscosity "qm~x: 

5 Tll~ " = ~ (2"rq xKT)ln - -  

l + Z ~  
'lqmi x - -  X v  -{- Yn 

2Xt  x 2  x 2 X~ = - -  x2 + + --= 
Xh ~12 ~2 

1 
~1~ 2~ 

3 . ,  fx  2 (ml / 2x, x2 (m, + m2) 2 (Xl22 t + x { m~t~ = -I- ---= - - =  

Y~ -5A'2t"~l vn2: rl,2 4re,m2 \'q,'q2] "rl2mieJ 

3A~{2(x(m21+.., [[(ml+m2)2]['q{2 1172 t } 
Z~=-~ \ \m,] -ag  J ,47 + -  - '  "q2 / 

where 

and 

Binary thermal conductivity ~-mix: 

75K (~.._T) In 

I + Z ×  
~kmi x - -  _ _  Xa+ Ya 

(1 +A) 

= _ _  2 x ~ x 2  x~  x~ x2 + + =  
M M2 k2 

2xlx2 x~ x2 U m +  U~ + --  U~2~ 
lq = ~ X~2 X2 

Zx = x2U m + 2x, x2U {z~ + ~2r~2~ .a. 2 t.: 

U~'~ 4 A ~  2 ~2(52B~'2+ 1) m' 
m2 

U '2) ~5A~2 1 (~-~ B~2 + 1) m2 
m l  

1 (ml - m 2 )  2 

2 in i m2 

I ( m 2  - -  ml) 2 
2 m I m 2 

(24) 

+ x (mq/ 
\m,,u 

(25) 
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U(y) = 4 A'~:~ I-[(rn~ __+ __m2)_/[ _,. 12]/X~-.  \ _ 
15 L 4m,m2 _l\)t,)M] 

32A ~(2 mira2 

4 
U~Z) AI2 

"4m-~lm= J\ X, ;k 2 J 15 

where 

1) 

1 ~ t ~  '2~ 
A*2 - (26) 

2 Ftt~ "1~ 

B~2 = ( 5 1 " ~  j )  - ~t~'3~)/(31"~t~ it) 

and x~, x 2 are mole fractions and mb m2 are the masses of  the atoms, with 
subscript 1 denoting the heavier component and subscript 2 the lighter one. 

4. RESULTS AND D I S C U S S I O N  

We have calculated the interaction potential between the noble gas atoms 
by employing the potential parameters in Table I and the Tang-Toennies 
model. We then calculated the transport properties of the two noble gases 
He and Ne: viscosity, thermal conductivity, self-diffusion, and binary diffusion 
coefficients. Our calculated transport properties are listed in Tables II-IV. In 
order to compare our results with others, we also list the best results given 
by Kestin et al. 

It is well known that the different transport properties of  gases are 
sensitive in different degrees to the different parts of the potential between 
gaseous atoms. So in order to check the accuracy of  our calculated interaction 
potential, we have to calculate the viscosity, thermal conductivity, self-diffu- 
sion, and binary diffusion coefficients of  the corresponding system at the 
same time. From the point of view of atomic and molecular physics, diffusion 

Table I. Potential Parameters (a.u.) Used in the Tang-Toennies Model for Noble Gas 
Atoms He and Ne 

System R,, • C6 C~ Cm A b 

He-He 5.608 3.42E-5 1.462 4.11002 83.500 19.988 62.3751 
Ne-Ne 5.834 1.34E-4 6,870 75,0000 1101.000 125.4183 2.3685 
He-Ne 5.751 6.50E-4 3.1455 32.7279 443.865 50.3599 3.3698 
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Table II. Comparison of Present Results with Those of Kestin et al. (1984) for Transport 
Properties of Helium as a Function of Temperature 

"11 (upa-s) h (roW/inK) D( 1.013 bar) (cm-~/sec) 

T (K) Kestin Present Kestin Present Kestin Present 

50. 6.04 6.02 47.17 47.11 0.0888 0.0822 
100. 9.66 9.36 75.54 73.25 0.2874 0.2645 
150. 12.61 12.20 98.63 95.44 0.5669 0.5217 
200. 15.26 14.79 119.32 115.69 0.9188 0.8478 
250. 17.72 17.25 138.53 134.86 1.3378 1.2389 
300. 20.04 19.58 156.66 153.05 1.8200 1.6892 
273. 18.81 18.33 147,04 143.32 1.5534 1.4385 
293. 19.73 19.25 154.23 150.54 1.7503 1.6226 
313. 20.63 20.16 161.29 157.65 1.9569 1.8158 
333. 21.52 21.06 168.22 165.65 2.1731 2.0179 
353. 22.40 21.95 175.04 171.55 2.3986 2,2289 
373. 23.25 22.82 181.75 178.36 2.6333 2.4492 
423. 25.35 24.96 198.1t 195.08 3.2597 3.0386 
473. 27,38 27.03 213.96 211.26 3.9411 3.6805 
523. 29.35 31.02 229.37 227.03 4.6761 4.3737 
573. 31.28 31.02 244.39 242.42 5.4632 5.1175 
623. 33.16 32.95 259.07 257.28 6.3014 5,9108 
673. 35.00 34.88 273.44 272.22 7.1895 6.7528 
723. 36.80 36.69 287.54 286.70 8.I266 7,424 
773, 38.58 38.51 301.39 300.90 9.1119 8,5789 
873. 42.04 42.05 328.43 328.60 II.2242 10.5900 
973, 45,41 45.49 354.70 355.45 13.5207 12.7816 

1073, 48.69 48,83 380.30 381.57 15.9970 15.1508 
1173. 51.90 52.09 405.33 407.01 18.6491 17.6913 
1273. 55.04 55.28 429.84 431.92 21.4733 20.4006 
1773. 69.96 70.30 546.30 549.26 38.0791 36,3932 
2273. 83.94 84.24 655.33 658.13 58.6286 56.2840 
2773. 97.24 97.45 759.14 761.29 82.9239 79,9009 
3273. 110.04 110.14 859.01 860.354 110.8216 107.1223 

coeff ic ients  are used to desc r ibe  the s ta t is t ical  mean  d i f fus ive  behav io r  when  
gaseous  a toms  are separa ted  at a cer tain dis tance.  Here  the long- range  at t rac-  
t ive d i spers ion  potent ia l  be tween  gaseous  a tom p lays  a l ead ing  role because  
o f  less charge over lap .  So  to a g rea t  extent ,  what  is g o o d  or  bad  in a ca lcu la ted  

result  for d i f fus ion ref lects  d i rec t ly  the smal l  or  large dev ia t ion  o f  the long-  
range  at t ract ive potent ia l  be tween  the theore t ica l  ca lcu la t ion  and the real  
value  be low the ionizat ion.  However ,  v iscos i ty  and thermal  conduc t iv i ty  
descr ibe  stat is t ical  mean v iscous  and thermal  conduc t ive  behav io r  when the 
gaseous  a toms are c lose  to each  other. Here  the shor t - range  repuls ive  potent ia l  
p lays  a leading  role because  o f  greater  charge  over lap .  So  what  is good  or  
bad  in the ca lcu la ted  resul ts  for v iscos i ty  and thermal  conduc t iv i ty  ref lects  
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Table III. Comparison of Present Results with Those of Kestin et aL (1984) for Transport 
Properties of Neon as a Function of Temperature 

",1 (upa-s) k (roW/inK) D(I.013 bar) (cm2/sec) 

T (K) Kestin Present Kestin Present Kestin Present 

50. 7.70 7.53 11.89 11.74 0.0206 0.0210 
100. 14.39 15.01 22.25 23,47 0.0766 0.0793 
150. 19.72 20.48 30.54 32,0t 0.1589 0.1581 
200. 24.29 24.98 37,63 39.08 0.2627 0.2658 
250. 28.36 28.96 43.96 45.35 0,385l 0.3924 
300, 32.10 32.53 49.77 50.95 0.5245 0.5348 
273. 30.13 30.64 46.71 47.98 0.4476 0.4560 
293. 31.60 32.06 49.00 50.19 0,5045 0.5140 
313. 33.04 33.42 51.22 52.34 0.5639 0.5744 
333. 34.43 34.75 53.39 54.42 0.6258 0.6374 
353. 35.80 36.06 55.51 56.48 0.6901 0.7031 
373. 37.13 37.33 57.58 58.45 0.7570 0.7714 
423. 40,35 40.38 62.57 63.24 0.9345 0,9516 
473. 43.42 43.33 67.34 67.85 1.1268 1.1469 
523. 46.38 46.15 71.93 72.26 1.3328 1.3558 
573. 49.25 48.91 76.38 76.58 1.5518 1.5795 
623. 52.03 51.59 80.69 80.76 1.7835 1.8161 
673. 54.74 54.19 84.90 84.83 2.0277 2.0661 
723. 57.39 56.75 89.00 88.83 2.2842 2.3289 
773. 59.99 59.25 93.02 92.75 2.5527 2.6045 
873. 65.02 64.15 100.83 100,39 3.1256 3.1944 
973. 69.89 68.90 108.36 107.81 3.7451 3,8342 

1073. 74.60 73.53 115.67 115.05 4.4100 4.5228 
1173. 79.19 78.05 122.78 122.11 5.1194 5.2563 
1273. 83.67 82.47 129.72 129.00 5.8722 6.0354 
1773. 104.72 103.50 162.33 161.82 10.2579 10.5812 
2273. 124.15 t23.16 192.41 192.53 15.6205 16.1571 
2773. 142.44 141.8t 220.73 221.66 21.8983 22.7045 
3273. 159.85 159.69 247.69 249.58 29.0462 30.1799 

di rec t ly  the smal l  or  large dev ia t ion  o f  the shor t - range  repuls ive  potent ia l  
be tween  the theore t ica l  ca lcu la t ion  and the ac t ive  value.  

F rom the Tables  I I - I V  we can see that our  ca lcu la ted  t ransport  proper t ies  
are in good  ag reemen t  wi th  the resul ts  g iven  by Kest in  et  al. within an 
accep tab le  to lerance .  A s  we ana lyzed  above ,  our  ca lcu la ted  long-range  at t rac-  
t ive d i spers ion  potent ia l  and  shor t - range  repuls ive  potent ia l  are both accurate ,  
owing  to the r easonab leness  o f  the T a n g - T o e n n i e s  potent ia l  model  and the 
choice  o f  potent ia l  pa ramete r s  as well  as the cor rec tness  o f  the method  o f  
computa t ion .  F rom Tables  I I - I V  we also f ind that all our  ca lcula ted  t ransport  
proper t ies  increase  with the increase  o f  the t empera tu re  o f  the system.  Our  
ca lcu la ted  d i f fus ion  coeff ic ients  decrease  with the increase  o f  gaseous  mass  
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Table IV. Comparison of Present Results with Those of Kestin et al. (1984) for Transport 
Properties of a Binary Mixture of Helium and Neon with XHe = 0.25 and Xne = 0.75 

as a Function of Temperature 

rl (upa. s) h (mW/mK) D( 1.013 bar) (cm2/sec) 

T (K) Kestin Present Kestin Present Kestin Present 

50. 7.72 7.65 16.93 16.88 0.0510 0.0512 
100. 14.00 14.43 29.79 30.45 0. t751 0.1739 
150. 18.98 19.42 40.17 40.88 0.3500 0.3486 
200. 23.27 23.59 49.16 49.71 0.5676 0.5647 
250. 27.11 27.33 57.09 57.68 0.8252 0.8198 
300. 30.66 30.73 64.69 65.01 1.1182 1.1136 
273. 28.79 28.92 60.67 61.12 0.9567 0.9499 
293. 30.19 30.26 63.68 64.01 1.0761 1.0686 
313. 31.55 31.57 66.61 66.84 1.2007 1.1931 
333. 32.88 32.84 69.47 69.60 1.3307 1.3231 
353. 34.18 34.10 72.26 72.33 1.4658 1.4590 
373. 35.45 35.32 74.99 75.00 1.6061 1.6002 
423. 38.53 38.27 81.59 81.49 1.9790 1.9775 
473. 41.49 41.14 87.92 87.79 2.3830 2.3891 
423. 44.34 43.88 94.02 93.86 2.8174 2.8312 
573. 47.10 46.57 99.95 99.78 3.2816 3.3031 
623. 49.78 49.18 105.72 105.53 3.7747 3.8053 
673, 52.40 51.72 I11.35 111.17 4.2963 4.3369 
723. 54.96 54.22 116.85 116.70 4.8458 4.8975 
773. 57.49 56.67 122.25 I22.12 5.4226 5.4864 
873. 62.34 61.46 132.76 132,72 6.6465 6.7481 
973. 67.05 66,11 142.93 142.99 7.9946 8.1183 

1073. 71.63 70.65 152.82 153.03 9.4340 9.5948 
1173. 76.08 75.08 162.16 162.83 10.9723 11.1772 
t273. 80.42 79.40 171.97 172.42 12.6071 12.860t 
1773. 100.89 99.99 216.33 217.93 22.1668 22.7340 
2273. 119.82 119.22 257.58 260.46 33.9092 34.9363 
2773. 137.66 137.43 296.55 300.80 47.7071 49.3331 
3273. 154.67 154.86 333.81 339.48 63.4673 65.8327 

(in the case of pure gases) or the reduced mass (in the case of binary gases). 
This is not different from what actually occurs. This shows that it is correct 
to proceed from the microscopic interaction potential to macroscopic transport 
properties by statistical principles. We can calculate all the transport properties 
over the full range of composition with our program. 

In this paper, starting from the microscopic interaction Tang-Toennies 
potential model, we obtained transport properties by statistical principles. 
Then we investigated the reasonableness of the microscopic interaction poten- 
tial model by combining our calculated results for the transport properties, 
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We have obtained a great deal of data on the behavior of gaseous matter 
under high temperatures. 
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